

Low-Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

Todd J. Toops (PI)

Email: toopstj@ornl.gov Phone: 865-341-1207

Oak Ridge National Laboratory
National Transportation Research Center

2019 DOE Vehicle Technologies Office Annual Merit Review

June 12, 2019

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: ace085

Acknowledgments

- Funding & guidance from DOE VTO Program Managers:
 - Ken Howden, Gurpreet Singh, Mike Weismiller

- Contributions from the ORNL Team:
 - Michelle Kidder, Pranaw Kunal, and Michael Lance

- Collaboration with University At Buffalo:
 - Judy Liu, Junjie Chen, Prof. Eleni Kyriakidou

- Access to instrumentation at ORNL:
 - Micrographs and elemental maps captured using instrumentation (FEI Talos F200X S/TEM) provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities

Project Overview

Timeline

Year 1 of 3-year program

Project start date: FY2019

Project end date: FY2021

 Builds on previous R&D in FY16-FY18

Budget

FY19: \$500k (Task 1*)

*Task 1: Low Temperature Emissions Control Catalysis Research

Part of large ORNL project "Controlling Emissions from High Efficiency Combustion Systems" (2018 VTO AOP Lab Call)

Barriers Addressed

U.S. DRIVE Advanced Combustion & Emission Control 2018 Roadmap Barriers & Targets:

- Addressing emission compliance barrier to market for advanced fuelefficient engine technologies, such as 90% conversion of NOx, CO and HC at 150°C
- Efficiency, durability, sulfur tolerance of aftertreatment systems

Collaborators & Partners

- US DRIVE Advanced Combustion and Emission Control Tech Team
- University at Buffalo (SUNY)

Objectives and Relevance

Develop new emission control technologies to enable fuel-efficient engines with low exhaust temperatures (<150°C) to meet emission regulations

Goal: 90% Conversion at 150°C

- Greater efficiency lowers exhaust temperature
- Catalysis is challenging at low temperatures
- Emissions standards getting more stringent

^{* &}quot;Conventional": modern state-of-the-art GDI Turbocharged (stoichiometric)

* "Advanced LTC": advanced lean-burn Low Temperature Combustion (LTC) engine

Relevance: Guiding Documents Define Industry Needs

Identified Needs Addressed:

- Lower temperature CO and HC oxidation
- Low temperature NOx reduction
- Cold start emission trapping technologies
 - Especially passive NOx adsorbers
- Reduced PGM
- Better durability
- Promote innovative catalytic solutions via partnering with DOE BES programs

Low Temperature Combustion (LTC)

Dilute Gasoline Combustion

Clean Diesel Combustion (CDC)

Approach: Lean low-temperature exhaust creates emissions challenges that must be addressed

Low Temperature Emissions Control

Discover new low T catalysts & traps

CLEERS

Model new trap materials

Lean Gasoline Emissions Control

Develop emissions pathway for lean gasoline engines to meet emissions

Chemistry and Control of Cold Start Emissions

exhaust chemistry impact on functionality

TWC: three-way catalyst HCT: hydrocarbon trap particulate filter

SCR:

OC:

selective catalytic NOx reduction CO/HC clean-up catalyst

oxidation catalyst

PNA: passive NOx adsorber

LNT: lean NOx trap

* - semi-quantitative representation

Employ low temperature protocols to evaluate catalysts

- Project employs US DRIVE Advanced Combustion and Emission Control Team Aftertreatment Protocols for Catalyst Characterization and Performance Evaluation
- Full protocol at: www.CLEERS.org

LTC-D: Low Temp. Combustion Diesel

Total HC₁: 3000 ppm

 C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm

*C₁₂H₂₆: 2100 ppm

CO: 2000 ppm NO: 100 ppm

H₂: 400 ppm

H₂O: 6 % CO₂: 6 %

 O_2 : 12 %

Balance N₂

<u>Powder Catalyst</u> <u>Requirements</u>

- Reactor ID 3-13 mm
- Catalyst particle size ≤ 0.25 mm
- Catalyst bed L/D≥1
- Space velocity
 - 200-400 L/g-hr
 - For 0.1 g, flow
 333-666 sccm

Collaborations

Academia

- University at Buffalo (SUNY): Prof. Eleni Kyriakidou, Judy Liu, Junjie Chen
 - Catalyst synthesis, characterization, and evaluation
- Harvard University: Wyss Institute for Biologically Inspired Engineering, Prof. Joanna Aizenberg
 - Evaluation of new types structured/stable catalysts (PGM supported on metal oxides)
- Karlsruhe Institute of Technology: joint paper on oxidation catalysts with Olaf Deutschmann

Industry

- USCAR/USDRIVE Low Temperature Aftertreatment (LTAT) working group
 - low temperature evaluation protocols
- Johnson Matthey: Industry input from Haiying Chen; partner on DOE project Sharan Sethuraman

DOE Basic Energy Science researchers

- Sheng Dai and Ashi Savara (ORNL), Center for Nanophase Materials Science
 - Catalysts synthesis and characterization

Other DOE funded projects

- CLEERS: Dissemination of data; presentation at CLEERS workshops
- PNNL: bi-monthly teleconferences established to share data on VTO projects
- University of Houston-led project with University of Virginia, Johnson Matthey, Southwest Research Institute
 - Project focusing on low temperature catalysis

Milestones of 3-year project

- FY19 Milestones: on track
 - Determine ion-exchange/nanoparticle distribution in HCT/PNA

- FY20 Milestones: on track
 - Determine which multifunctional configuration yields the highest activity while simulating cold start heating rates using the top performing HC Trap/PNA + DOC
- FY21 Milestones: on track
 - Demonstrate 90% conversion of criteria pollutants CO, HC, and NOx at 150°C on hydrothermally-aged catalysts

Technical Accomplishments

- Oxidation catalysts
- Trap/Adsorber Materials
 - Hydrocarbon trap
 - Passive NOx adsorbers
- Combined systems

Results are building on promising SiO₂@ZrO₂ core@shell support for Pt and Pd catalysts

- PGM supported on a shell of ZrO₂ around a core of SiO₂ (SiO₂@ZrO₂)
- Exceptional low temperature activity observed with Pt+Pd physical mixture
 - Bed loading: 1.8% Pt and 1.0% Pd
 - Initially, aged at 800 °C for 10h

Protocol aging: reaction conditions at 800°C for 50h, 5 ppm SO₂ @ 300°C 5 h

- Investigating improved durability of Pt and Pd on novel supports has been the focus of project
- Improving initial dispersion, and maintaining small Pt + Pd particle sizes throughout aging protocol

Conditions during 2°C ramp

total HC_1 : 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$:2100 ppm

CO: 2000 ppm NO: 100 ppm Also H_2 , O_2 , H_2 O and CO_2

Varying diameter of SiO₂@ZrO₂ initiated with goal of creating surface that is less prone to Pt /Pd sintering

~490 nm

~290 nm

~150-200 nm

~120 nm

<100 nm

- Loading Pd on smaller SiO₂@ZrO₂ spheres led to higher dispersion
 - Higher surface area may prevent Pd agglomeration
- Initially focusing on the 150-200 nm supports with Pd, Pt, and combinations
 - Evaluation of all supports forthcoming

SiO ₂ size	> 450 nm	150-200 nm
Si@Zr BET SA	147 m ² /g	376 m²/g
Si@Zr BJH PV	0.14 cm ³ /g	0.33 cm ³ /g
Pd dispersion*	3.9 %	24.1 %
Avg. Pd size*	28.8 nm	4.6 nm

Combinations with Pd and Pt continue to show the best reactivity, but 150 °C goal is still elusive

- Supports continue to show good initial THC reactivity, but not reaching 90% conversion until ~250 °C
- Other oxidation catalysts are under consideration

Hydrothermally aged at 800 °C for 10h

Conditions during 2°C ramp total HC_1 : 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$:2100 ppm CO: 2000 ppm NO: 100 ppm Also H_2 , O_2 , H_2O and CO_2

Other supports to be evaluated

- SiO₂@ZrO₂ core@shell
 - Average diameter: 340 nm

Average diameter: 260 nm

- SiO₂@CeO₂-ZrO₂ core@shell
 - Average diameter: 260 nm

- CeO₂@ZrO₂ core@shell
 - Average diameter: 150 nm

Technical Accomplishments

- Oxidation catalysts
- Trap/Adsorber Materials
 - Hydrocarbon trap
 - Passive NOx adsorbers
- Combined systems

Pd/ZSM-5 initially is a combination HC Trap and Passive NOx Adsorber, but loses NOx functionality with aging

Pd/ZSM-5 only: HC/NO release following 30 min storage

- Pd/ZSM-5 shows favorable release temperatures for pairing with an active DOC catalyst
- Release of NO across two peak temperatures
- Most functionality of Pd/ZSM-5 lost after aging;
 - → However, decane is still trapped very effectively
- Indicates ion-exchanged Pd does not exist after aging
 - shown in literature to be essential for NO adsorption*

Conditions during 30 min storage step at 100°C

total HC ₁ :	3000 ppm
C_2H_4 :	500 ppm
C_3H_6 :	300 ppm
C_3H_8 :	100 ppm
$C_{10}H_{22}$	2:2100 ppm
CO:	2000 ppm
NO:	100 ppm
Also H ₂ , O	$_2$, H_2 O and CO_2

Pd/ZSM-5 initially is a combination HC Trap and Passive NOx Adsorber, but loses NOx functionality with aging

Pd/ZSM-5 only: HC/NO release following 30 min storage

- 2. More durable zeolite needed to maintain NO adsorption functionality after 800°C
- Most functionality of Pd/ZSM-5 lost after aging;
 - → However, decane is still trapped very effectively
- Indicates ion-exchanged Pd does not exist after aging
 - shown in literature to be essential for NO adsorption*

exchanged metals

 C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$:2100 ppm

CO: 2000 ppm NO: 100 ppm Also H₂, O₂, H₂O and CO₂

-100 ^{_}

Pd/Z an ac

Rele

Unexchanged ZSM-5 shows considerable HC storage; mostly heavy hydrocarbons

- Evaluation:
 - 30 min at 100°C → 20°C/min ramp to 600°C → hold 4h
- FID measurement indicates 2.5-3.0 mmols/g_{cat}
 - Measured during desorption
 - C₁₀H₂₂ comprises 88-93% of THC adsorption

Total Hydrocarbons: FID

total HC_1 : 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$:2100 ppm CO: 2000 ppm NO: 100 ppm Also H_2 , O_2 , H_2O and CO_2

Pd/SSZ-13 capable of storing significant NO under US-DRIVE protocol relevant conditions

- Synthesized 1% ion-exchanged Pd/SSZ-13 using commercially available SSZ-13 zeolite
- Evaluation:
 - 30 min at 100°C → 20°C/min ramp to 600°C → hold 1 h

- NO:Pd decreases from 0.22 to 0.18 mol:mol
- Decreasing NO adsorption/desorption between trials
 - 1. Incomplete NO removal?
 - 2. Loss of Pd ion-exchange sites

Extending high temperature regen from 1h to 4h stabilizes NO storage capacity but losses still apparent

- Synthesized 1% ion-exchanged Pd/SSZ-13 using commercially available SSZ-13 zeolite
- Evaluation:
 - 30 min at 100°C → 20°C/min ramp to 600°C → hold 4h

- NO:Pd stabilizes around 0.16 mol:mol
 - Lower than originally measured, 0.22-0.18
- Prefer higher uptake and Pd utilization

Aging Pd/SSZ-13 (US-DRIVE protocol) results in improved NOx uptake, suggesting incomplete initial ion-exchange

- Hydrothermal aging at 800 °C for 25h
- Evaluation:
 - 30 min at 100°C → 20°C/min ramp to 600°C → hold 4h

After aging for 25h at 800°C

- NO:Pd increases to 0.3 mol:mol
 - Up from 0.16 mol:mol
- Still observing decreased adsorption with each trial
 - $-0.32 \rightarrow 0.30 \rightarrow 0.28 \rightarrow 0.27$

Aging Pd/SSZ-13 (US-DRIVE protocol) results in improved NOx uptake, suggesting incomplete initial ion-exchange

- Hydrothermal aging at 800 °C for 50h
- Evaluation:
 - 30 min at 100°C → 20°C/min ramp to 600°C → hold 4h

After aging for 50h at 800°C

- With continued aging and evaluation NO:Pd continues to decrease
 - 0.24→0.23→0.22 mol:mol
- Suggests loss of Pd ionexchange sites
 - Goal is to quantify

Tracking NO uptake shows steady decrease

Evaluation:

- 30 min at 100°C → 20°C/min ramp to 600°C → hold 4h

NOx:Pd (mol/mol)

LTC-D oxidation protocol conditions during 30 min storage step at 100°C

total HC_1 : 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$:2100 ppm CO: 2000 ppm NO: 100 ppm Also H_2 , O_2 , H_2O and CO_2

Tracking NO uptake shows steady decrease

Evaluation:

- 30 min at 100°C → 20°C/min ramp to 600°C → hold 4h

NOx:Pd (mol/mol)

LTC-D oxidation protocol conditions during 30 min storage step at 100°C

total HC_1 : 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$:2100 ppm CO: 2000 ppm NO: 100 ppm Also H_2 , O_2 , H_2O and CO_2

Technical Accomplishments

- Oxidation catalysts
- Trap/Adsorber Materials
 - Hydrocarbon trap
 - Passive NOx adsorbers

Combined systems

Combining ZSM-5 + Pd/SSZ-13 illustrates stable NO and THC after 4 trials; NO uptake increases

- Evaluation:
 - Degreen at 700°C for 15 h
 - 30 min at 100°C \rightarrow 20°C/min ramp to 600°C \rightarrow hold 4h
 - Mixture of 100mg ZSM-5 + 100mg 1% Pd/SSZ-13
 - Overall 200 L/g-h including both catalysts (666 sccm)

- LTC-D oxidation protocol conditions during 30 min storage step at 100°C
- total HC_1 : 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$:2100 ppm CO: 2000 ppm NO: 100 ppm

Also H_2 , O_2 , H_2O and CO_2

- HC uptake 2.4-2.6 mmols/g_{cat}
 - Measured during adsorption

Total Hydrocarbons: FID

- NO:Pd ratio 0.50-0.53 mol:mol
 - Measured during adsorption
 Total NOx: chemiluminescence

Adding oxidation catalyst shows overall conversion of >50% for THC and NOx

- Evaluation:
 - Introduce reactants and immediately begin ramp
 - 40°C/min ramp to 620°C
 - Physical Mixture of
 - 100 mg ZSM-5
 - 100 mg 1% Pd/SSZ-13
 - 100 mg 0.9% Pt/0.5% Pd/SiO₂@ZrO₂
 - Overall 133 L/g-h including all three catalysts (666 sccm)
- Release of HCs overwhelms oxidation catalyst
 - Need higher activity or more catalyst
- NO:Pd at 250s = 0.68
 - Based on mols in Pd/SSZ-13

Aging 40h at 800°C mostly impacts NO storage; release temperature increases ~15°C

• Evaluation:

- Introduce reactants and immediately begin ramp
 - 40°C/min ramp to 620°C
- Physical Mixture of
 - 100 mg ZSM-5
 - 100 mg 1% Pd/CHA
 - 100 mg 0.9% Pt/0.5% Pd/SiO₂@ZrO₂
- Overall 133 L/g-h including all three catalysts (666 sccm)
- Higher percentage of HCs removed on aged sample
- NO uptake decreases
 - NO:Pd at 250s = 0.38
 - Based on mols in Pd/SSZ-13

* - Based on Ford study relevant to cold start and time to catalyst lightoff (SAE 2018-01-0938).

Aging 3-component system generally impacts CO and NO functionality more than HC

- The percentage removal of CO and NO decreases with aging, but not HC
- Reactivity decreases for both CO and HC

Aged 20h 800C

Aged 40h 800C

DG 15h 700C

Remaining Challenges

Oxidation Catalysts

Need improved oxidation of HCs after aging

Passive NOx Adsorbers

NOx uptake is not fast enough

PGM utilization needs improvement under realistic conditions

Hydrocarbon traps

Increased storage capacity of lighter HCs will be necessary

* - promising results recently published: Nie et al., Science OAK RIDGE | NATIONAL TRANSPORTATION RESEARCH CENTER 358, 1419–1423 (2017).

Future Directions

- Evaluate supports that are already made with emphasis on ceria-based supports*
 - More characterization to understand strong interaction between support and PGM
 - Interesting collaboration starting with Harvard University
- Work with CLEERS to understand what is slowing down uptake and investigate other options
- Introduce surface studies to understand what is limiting access or limiting Pd Ion exchange
 - Investigate other zeolites or including non-PGM metals for ion-exchange
- Any proposed future work is subject to change based on funding levels

Response to reviewer comments

- REVIEWER: Implement severe aging earlier in the evaluation process
 - Working to do this as much as possible, but also trying to understand where samples fail in case the aging conditions are not as severe as previously thought
- REVIEWER: Better understanding of bimetallics is needed and more characterization is warranted
 - A specific goal of this years efforts and milestone highlights that; also hired post-doc with specific experience with bi-metallics
- REVIEWER: Incorporate chabazite into the matrix of samples being evaluated
 - Successfully procured CHA/SSZ-13 from commercial supplier and exchanged with Pd; large part of the results shown so far and will continue to be so

Summary

- **Relevance:** Develop new emission control technologies to enable fuel-efficient engines with low exhaust temperatures (<150°C) to meet emission regulations
- Approach: employ low temperature protocols to evaluate novel catalysts and systems
- Collaborations: Wide-ranging collaboration with industry, academia, other DOE projects,
 & national labs maximizes breadth of study, guides research from other funding sources

Technical Accomplishments:

- Synthesized new class of novel supports to be investigated for improved durability and low temperature oxidation
- Established new collaborations with University at Buffalo and Harvard University
- Demonstrated HC trap functionality and durability of PGM-free zeolite
- Evaluated Pd/SSZ-13 for passive NOx adsorption and discovered deactivation mechanism that occurs during evaluation as a single component
- Demonstrated potential and durability of combining a non-PGM zeolite, Pd/SSZ-13 PNA, and oxidation catalyst to treat low temperature emissions

Future Work:

- Evaluation of new novel supports aiming to take advantage of the reported activity using ceria supports
- New collaboration with Harvard investigating high surface area and stable material
- Develop understanding of Pd ion-exchange with SSZ-13 and losses with evaluation
- Investigate impact of non-PGM ion-exchanged metals on ZSM-5 and BEA for improved HC trap functionality, especially for smaller molecules

Technical Backup Slides

ZrO₂ support has shown excellent activity with Pd catalyst; but looking for improved activity and durability

Pd/ZrO₂ has good activity, excellent thermal durability, good S tolerance

ZrO₂-SiO₂ mixed

oxide

- Goal: further improve activity and sulfur tolerance
 - Support ZrO₂ on high surface area SiO₂
- Initial effort not successful as Pd/ZrO₂ still more active
 - not a monolayer; 15% coverage of SiO₂ surface
 - Pd dispersed on both ZrO $_2$ and SiO $_2$

New approach: Cover all of the SiO₂ surface with Zr

Synthesis of SiO₂@ZrO₂ core@shell Oxide Support

Material	Surface Area (m²/g)	7 for 3 day's oc
ZrO ₂	97	ZrO ₂ SiO ₂ Aging for at 10
ZrO ₂ -SiO ₂	153	Con
SiO ₂ @ZrO ₂	210	\rightarrow 0 \cup

Silica core and zirconium oxide shell after calcination at 700 °C

- SiO₂ is located in the core and ZrO₂ in the shell
- The ZrO₂ shell seems to be **porous**
- Growth of SiO₂@ZrO₂ spheres. Shell is maintained. Diameter at: 900 °C: ~250 nm

New synthesis technique successfully creates durable ZrO₂ shell around SiO₂ core

- Able to synthesize a complete shell around SiO₂ core using new technique Pd/SiO₂@ZrO₂
 ZrO₂-SiO₂ mixed
 - Pd (1 wt%) deposition solely on ZrO₂ outer shell
- While employing US-DRIVE low temperature protocols improved activity shown with this technique
- Robust after aging at 900°C for 10h

oxide

ZrO,

This research was performed, in part, using instrumentation (FEI Talos F200X S/TEM) provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities.

Trap materials + oxidation catalysts significantly improve overall system functionality after aging

Protocol aging: reaction conditions at 800°C for 50h, 5 ppm SO₂ @ 300°C 5 h Desulfation under cycling lean-rich conditions for 30 min at 500°C, 30s per condition

 Although Pd/ZSM-5 trap is heavily degraded, it still improves reactivity of system considerably in dual-bed configuration

Conditions during 2°C ramp		
total HC₁:	3000 ppm	
C_2H_4 :	500 ppm	
C_3H_6 :	300 ppm	
C_3H_8 :	100 ppm	
$C_{10}H_{22}$:2100 ppm	
CO:	2000 ppm	
NO:	100 ppm	
Also H_2 , O_2	$_2$, H_2 O and CO_2	

Pt/CeO₂ is also under consideration and showing remarkable PGM stability

- Simple incipient wetness technique
 - Calcined at 800°C
- Initial surface area is only 37 m²/g
- 1.4 nm size particles measured after aging
 - CO chemisorption
 - 750 ° C in 10% H₂O for 9h
- Significant room for improvement if dispersing CeO₂ on high surface area support

Inlet Temperature (°C)